APP求职
小程序求职
 丨  关注公众号
客服:400-9028-806  丨  招聘优势  丨  客户评价  丨  注册简历
首页 > 行业新闻 > 探析燃料电池大事件

探析燃料电池大事件

发布时间:2018-01-22 09:18:27浏览次数:945次

(本网部分图文转载于网络和用户上传,目的在于传递更多信息,版权归原作者。不希望被转请在30日内同本网联系删除。)

       燃料电池是一种清洁高效的能源利用方式,它是一种能够持续将化学能转化为电能的能量转换装置。近20 年以来,燃料电池这种高效、洁净的能量转化装置得到了各国政府、开发商及研究机构的普遍重视。在交通运输、便携式电源、分散电站、航空及水下潜器等民用与军用领域燃料电池展现出广阔的应用前景。

燃料电池

  基于石墨烯的微生物燃料电池电极

  单室无膜微生物燃料电池在柔性可穿戴器件应用研究

  美国纽约州立大学宾汉顿分校的Seokheun Choi助理教授(通讯作者)课题组设计并制备了集成在单张纤维织物上的单室无膜微生物燃料电池。

  该微生物燃料电池的内阻约为10 kΩ,当外电路负载10 kΩ的电阻时能达到52 μA/cm2的电流密度和6.4 μW/cm2的最大功率密度,其电化学性能接近于目前的柔性纸基微生物燃料电池水平,并远远超过了以柔性织物为基底的微生物燃料电池。在反复拉伸、扭转的动态力学测试条件下,尽管纤维织物表面的导电碳层发生部分断裂并引起电池内阻升高,电极活性材料仍能牢固附着在纤维织物表面,从而保证机械变形条件下仍有较稳定的输出电流及功率密度。该研究成果已发表在《Advanced Energy Materials》上。

  采用陶瓷3D打印技术提高固体氧化物燃料电池的生产效率

  加泰罗尼亚能源研究所利用陶瓷3D打印技术帮助生产更高效的燃料电池。

燃料电池

  该研究项目被称为cell3ditor,旨在使用陶瓷3D打印技术开发可用于固体氧化物燃料电池(SOFC)制造复合材料技术。目前,制造一种固体氧化物燃料电池需要100多个步骤来生产,不同的组件是分开制造,然后再组装使用玻璃密封。这种复杂性大大增加了生产和初始投资的成本,估计造价约为480万欧元。而且还会降低灵活性,限制创新的引入。现在利用3D打印技术可以很好地改变这一切,缩短生产时间和成本,大大简化整个装配过程。

  中国科大成功研制出铂超细纳米线催化剂

  中国科学技术大学曾杰课题组与合作者,在质子交换膜燃料电池阴极催化剂研制方面取得重要进展。

  研究人员基于集团效应,设计出一种铑原子掺杂的铂超细纳米线催化剂。这种催化剂在燃料电池阴极氧还原反应中表现出高活性和高稳定性——在氧气气氛下循环使用1万次后,只损失了9.2%的质量活性。而目前商用的铂碳催化剂在氧气气氛下循环使用1万次后,质量活性性能损失达到72.3%。从而能大幅节省贵金属铂的用量,推动了该清洁能源转换技术的商业化应用进程。

  中国科学院过程工程研究所多相复杂系统国家重点实验室研究员杨军课题组开发出直接甲醇燃料电池选择性电催化剂。

  研究人员在深刻理解DMFC中甲醇催化氧化和氧气催化还原机理的基础上,设计贵金属基异质结构纳米材料,充分利用异质材料中的晶格应变效应和电子耦合效应调控材料的催化性能,不仅使材料具有优良的催化活性,而且使材料对DMFC中的甲醇氧化或氧气还原具有很好的选择性。研究者们研究了催化剂的制备、放大和表征,在利用无质子膜DMFC模型证实了催化剂选择性的基础上,成功组装了DMFC单电池。该研究结果发表于《ScienceAdvances》上。

  中国科学院苏州纳米所研究员周小春ACS Nano: 高功率密度轻柔燃料电池

  苏州纳米技术与纳米仿生研究所研究员周小春课题组通过设计一种新型的柔性复合电极从而制备出轻柔的吸气式质子交换膜燃料电池。

  新型的柔性电极由碳纳米管膜打孔后再复合碳纸制备而成,其具有优异的导电性、良好的柔性和高透气性等优点,有利于反应物和产物的输运。并且这种电极可同时作为气体传输层和集流体,取代了传统质子交换膜燃料电池中的石墨或金属集流体,极大减小了燃料电池的体积和重量。由这种柔性电极制备出的质子交换膜燃料电池具有5190WL-1的体积功率密度和2230Wkg-1的质量功率密度,弯折600次后仍可以保留89.1%的性能,从30m高度落下5次后性能保持不变,展现出极高的功率密度和优异的机械性能。

  西工大开发出用于燃料电池双活性去合金化枝晶的一步法制备技术

  本项研究工作首次开创了一种灵活可控的一步电化学方法,成功合成了去合金化的AuNi多层次纳米枝晶。更重要的是,该一步法制备的去合金化AuNi纳米枝晶比采用传统多步法去合金制备的AuNi的催化性能更加优异,展现出其在燃料电池领域极大的应用价值。另外,该研究工作通过系统的实验进一步验证了该一步法的合理性和通用性,从而为发展下一代新型电催化材料提供了一种全新的思路。

  俄研制出氢燃料电池纳米镁粉末

  俄罗斯科学院物理学学院与西伯利亚联邦大学科学家合作,研发出一种制造氢燃料电池的粉末材料。

  为贮存和运送足够汽车行驶的氢气量,科学家们通常在高压下以压缩、液化、瓶装和罐装形式贮存氢气,以化合物的形式贮存氢气的新技术也相继问世。多年研究证明,以氢化物形式贮存氢气最具前景的金属是镁。镁的密度不大,价格相对低廉。这次,俄研究人员研发出一种技术,能合成一种纳米分散性镁粉末,从而“贮存”更多氢气。参与这项工作的物理数学教授格里戈里·丘里洛夫说,他们用镁粉末合成的氢,超过目前世界上含量最高的原料,向制造出真正安全的氢燃料电池又近了一步。

  myFC制造出世界上最薄的燃料电池

  瑞典的myFC在便携式电子产品的综合绿色能源方面取得技术突破。该公司近期推出世界上最薄的燃料电池,新电池myFC LAMINA™薄膜燃料电池非常纤薄,可以嵌入式完全内置在智能手机和便携式充电器设备中。

  微型电子产品要求更少的空间和更多的性能。该公司在去年11月第一次展示集成燃料电池的智能手机和电力工作站。然而,电池从装置的外壳突出0.9mm,新电池-myFC LAMINA™薄膜FC技术可以完全集成在设备中。

  该工作首先通过化学油相合成并精细表征了具有特殊结构的六方PtPb合金纳米片,并评价了该材料的氧还原和醇氧化催化性能,最后基于量化计算结果证明膨胀晶格应力对Pt(110)面的催化性能有大的促进作用。这一全新活性位点的提出突破了过去人们对晶格应力作用的传统理解,为高性能电催化材料的设计和开发指出了新方向。

  标题:探析燃料电池大事件  地址:http://www.batthr.com/news/hangye/180990.html

分享

粤ICP备12041652号  粤B2-20181492人力资源许可证
粤公网安备 44010602006150号
版权所有:广州中缆信息科技有限公司
[本站之人才及招聘,未经授权不得转载,否则追究其法律责任]